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Abstract  
This study investigated the absolute stability property as well as the region of absolute stability 

of an implicit one – step multiderivative scheme of the form:  
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 , , 𝑖 = 1 − 6 ( i is the order of derivative). 

For the analysis of these properties, the study verified the root conditions, used Dalhquist 

stability test equation as well as boundary locus method on the variants of the scheme. The 

Region of Absolute Stability (RAS) for each variant of the scheme was determined by plotting 

the graph of absolute stability on the complex plain. The study showed that the third and fourth 

derivative methods have wider region of absolute stability hence the reason why the methods 

yielded more accurate results than other variants of the scheme when the methods were used 

to solve sampled stiff initial value problem of first order ordinary differential equation.   
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1.0 Introduction 

Numerical methods are essentially needed when problems that lead to equations that cannot be 

solved analytically are encountered. Examples of such problems are solution of large systems 

of algebraic equations, solution of differential equations and evaluation of integrals. Numerical 

analysts are therefore concerned with stability which is a concept that refers to the sensitivity 

of the solution of a problem to small changes in the data or the parameters of the problem. 

According to Lambert (2000), the numerical solution of a one-step method depends on the 

initial condition 𝑦0 while the numerical solution of a k-step method depends on all the k starting 

values, 𝑦0, 𝑦1, 𝑦2, … , 𝑦𝑘−1. It is thus of interest whether the numerical solution is stable with 

respect to perturbations in the starting value(s). 

 According to Suli and Mayer (2003), a linear multistep method is zero-stable for a certain 

differential equation on a given time interval if a perturbation in the starting values of size ε 

causes the numerical solution over that time interval to change by no more than Kε for some 

value of K which does not depend on the step size h, this is called "zero-stability" because it is 

enough to check the condition for the differential equation 𝑦1 = 0. If the roots of the 

characteristic polynomial ρ all have modulus less than or equal to 1 and the roots of modulus 

1 are of multiplicity 1, then the root condition is satisfied. A linear multistep method is therefore 

zero-stable if and only if the root condition is satisfied, that is, if the roots of the generating 

polynomial 𝜌(𝑟) satisfy the following conditions 

 (i) all roots 𝑟𝑖 satisfy |𝑟𝑖| ≤ 1  (ii) all roots 𝑟𝑖 with |𝑟𝑖| = 1 are simple. 

1k 
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If either of these two conditions is violated, the method is unstable. This is equivalent to 𝜌(𝑟) 

having either a root  𝑟𝑖 outside the unit circle or a multiple root on the circle. 

According to Ezzeddine and Hojjati (2012), the form of stability needed is sometimes stronger 

than zero stability, error is well behaved for the particular time step being used, although, the 

exponential growth of errors does not contradict zero stability or convergence of the method in 

any way. To determine whether a numerical method will produce reasonable result with a given 

value of 𝑘 > 0, a notion of stability that is different from zero stability is needed. The one 

which is most basic is absolute stability whose notion is based on the linear test equation:     

𝑦1 =⋋ 𝑦.  

Stiff initial value problems are frequent occurrences in the mathematical formulation of 

physical situations in control theory and mass kinetics where processes with widely varying 

time space are usually considered. In some chemical engineering problems, dynamic balance 

must be solved with accumulation that terms differ by several orders of magnitude. This 

corresponds to physical processes where some dependent variables relax very fast while others 

approach the stationary state slowly. This type of problems is called “stiff” and are difficult to 

solve. Stiff problems often arise in reactor engineering (radical reactions, complex reactions 

with some of them very fast) and in system engineering (dynamic regime of a distillation 

column with a mixture containing one very volatile component or one component with very 

low concentration). 

Problems in dynamics of counter-current separation devices or systems of interacting devices 

lead to systems of hundreds of ordinary differential equations. Solution of such problems often 

requires special algorithms. 

In recent years, numerous works have focused on the development of more advanced and 

efficient methods for stiff problems. A potentially good numerical method for the solution of 

stiff systems of ordinary differential equations must have good accuracy and some reasonable 

wide region of absolute stability. Backward differentiation formulas (BDF) are also implicit 

methods which are especially used for the solution of stiff differential equations because they 

are absolutely – stable methods. [Ebadi and Gokhale (2010)] 

According to Lei (2008), a linear multistep method is called absolutely – stable if the region of 

its stability extends into the left half of the complex plain and if errors introduced in one - time 

step do not grow in future time step. In this study, the linear multiderivative scheme developed 

in Famurewa (2011) will be investigated to ascertain the capability of the methods to solving 

stiff ordinary differential equations.   

 

2.0 REASERCH METHODOLOGY 

Setting i = 1,2,3,4,5 and 6 in the one – step multiderivative scheme of the form: 
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 , 𝑎1 = 1,                                 ……………… (1)             

yielded one step first derivative method of the form: 

 𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
(𝑦𝑛+1

1 + 𝑦𝑛
1)                                                           …………………… (2) 

one step second derivative method of the form:   

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
(𝑦𝑛+1

1 + 𝑦𝑛
1) −

ℎ2

12
(𝑦𝑛+1

11 + 𝑦𝑛
11)                           ……………………… (3) 

one step third derivative method of the form:  

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
(𝑦𝑛+1

1 + 𝑦𝑛
1) −

ℎ2

10
(𝑦𝑛+1

11 − 𝑦𝑛
11) +

ℎ3

120
(𝑦𝑛+1

111 + 𝑦𝑛
111)           …………. (4) 

one step fourth derivative method of the form: 

𝑦𝑛+1 = 𝑦𝑛 + 0.5ℎ(𝑦𝑛+1
1 + 𝑦𝑛

1) − 0.11ℎ2(𝑦𝑛+1
11 − 𝑦𝑛

11) + 0.01ℎ3(𝑦𝑛+1
111 + 𝑦𝑛

111)    …. (5) 
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one step fifth derivative method of the form: 

𝑦𝑛+1 = 𝑦𝑛 + 0.5ℎ(𝑦𝑛+1
1 + 𝑦𝑛

1) − 0.11ℎ2(𝑦𝑛+1
11 − 𝑦𝑛

11) + 0.01ℎ3(𝑦𝑛+1
111 + 𝑦𝑛

111)  .……. (6) 

 and one step sixth derivative method of the form: 

𝑦𝑛+1 = 𝑦𝑛 + 0.5ℎ(𝑦𝑛+1
1 + 𝑦𝑛

1) − 0.11ℎ2(𝑦𝑛+1
11 − 𝑦𝑛

11) + 0.02ℎ3(𝑦𝑛+1
111 + 𝑦𝑛

111)  .……. (7) 

as reported by Famurewa and Olorunsola (2013) 

 

2.1 Analysis of the Zero-stability property of the method 

 According to Babatola et al.; (2007), a L.M.M of the form: 

𝑦𝑛+𝑘 = 𝛼0𝑦𝑛 + ℎ(𝛽1𝑦1
𝑛+𝑘

+ 𝛽0𝑦1
𝑛

)  

with first characteristic polynomial                                                                 

𝜌(𝑟) = 𝑟𝑛+𝑘 − 𝛼0𝑟𝑛  

is said to be zero-stable if the root of the first characteristic polynomial 𝜌(𝑟) has modulus less 

than or equal to 1;  (|𝑟| ≤ 1) 

Equations (2) – (7) have their first characteristic polynomial 𝜌(𝑟)  
as: 

𝑟𝑛+1 − 𝑟𝑛 = 0 

𝑟𝑛(𝑟 − 1) = 0 

and the roots are 𝑟 = 0 𝑜𝑟 𝑟 = 1 [roots are within a unit circle]  

Hence, the methods are all zero stable as reported in Famurewa and Olorunsola (2013) 

 

2.2 Analysis of Absolute stability 

A linear multistep method is absolutely stable if the region of its stability extends into the left 

half of the complex plane, Butcher (2008).  

Boundary locus method and Dalhquist stability test equation 𝑦1 =⋋ 𝑦 were adopted in 

equations (2) – (7). 

 

2.2.1 For the one step first derivative method of equation (2): 

Setting 𝑧 = 𝜆ℎ and simplifying gives  

|
1 −

𝑧
2

1 +
𝑧
2

| < 1 

that is           −1 <
1−

𝑧

2

1+
𝑧

2

< 1 

Simplifying further gives 𝑧 < 2 and 𝑧 < 0.  

Since |𝑢(𝑧)| < 1, then the method is A - stable 

 

2.2.2 For the one step second derivative method of equation (3): 

|
1 −

𝑧
2 +

𝑧2

12

1 +
𝑧
2 +

𝑧2

12

| < 1 

Simplifying gives:  𝑧2 > −12 and 𝑧 < 0 considering the real part gives |𝑢(𝑧)| < 0, hence the 

method is A - stable 

 

2.2.3 For the one step third derivative method of equation (4): 
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2 +
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Simplifying gives:  𝑧2 > −60 and 𝑧 < 0 considering the real part gives |𝑢(𝑧)| < 0, hence the 

method is A - stable 

 

2.2.4 For the one step fourth derivative method of equation (5): 

|
1 + 0.5𝑧 + 0.11𝑧2 + 0.01𝑧3

1 − 0.5𝑧 + 0.11𝑧2 − 0.01𝑧3
| < 1 

Simplifying gives: 𝑧2 > −9.09 and 𝑧 < 0 considering the real part gives |𝑢(𝑧)| < 0, hence 

the method is A - stable 

 

2.2.5 For the one step fifth derivative method of equation (6): 

|
1 + 0.5𝑧 − 0.11𝑧2 + 0.01𝑧3

1 − 0.5𝑧 + 0.11𝑧2 − 0.01𝑧3
| < 1 

Simplifying considering the real part gives |𝑢(𝑧)| < 0, hence the method is A - stable 

 

2.2.6 For the one step sixth derivative method of equation (7): 

|
1 + 0.5𝑧 + 0.11𝑧2 + 0.02𝑧3

1 − 0.5𝑧 + 0.11𝑧2 − 0.02𝑧3
| < 1 

Simplifying considering the real part gives |𝑢(𝑧)| < 0, hence the method is A - stable 

 

3.0 Determination of Region of Absolute Stability 

To determine the region of absolute stability of the methods, the solutions to  |𝑢(𝑧)| =  𝑒𝑖θ  is 

plotted at an interval of 300 between 00 ≤ 𝜗 ≤ 1800. This gives the interval of absolute 

stability as (0,∞) in figures I – 6. 

 

 
Figure 1: Region of A - stability for one - step first derivative scheme. 
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Figure 2: Region of A - stability for one - step second derivative scheme. 

 
Figure 3: Region of A - stability for one - step third derivative scheme. 

 
Figure 4: Region of A - stability for one - step fifth derivative scheme. 
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Figure 5: Region of A - stability for one - step fifth derivative scheme. 

. 

 
Figure 6: Region of A - stability for one - step sixth derivative scheme 

 

4.0 Conclusion 

The study showed that the implicit one step multiderivative methods are absolutely stable hence 

are capable of solving stiff initial value problems of first order ordinary differential equations.  

Figures 1 – 6 showed that the one step third derivative method of equation (4) and one step 

fourth derivative method of equation (5) covered a wider part of the left half of the complex 

plain than the other methods examined. This establishes the reason for the better results 

obtained when the one - step third derivative method and one – step fourth derivative method 

were used to solve a stiff first order ordinary differential equation as reported in Famurewa and 

Olorunisola (2013). 
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